

 Navigation

 	
 index

 	grape.recipe.pipeline

Welcome to grape.recipe.pipeline’s documentation!

Grape (Grape RNA-Seq Analysis Pipeline Environment) is a pipeline for processing
and analyzing RNA-Seq data developed at the Bioinformatics and Genomics unit of
the Centre for Genomic Regulation (CRG) [http://www.crg.es] in Barcelona.

The grape.buildout package makes use of the grape.recipe.pipeline recipe
to configure Grape pipelines. You get preconfigured start and execute scripts,
and don’t have to worry about command line options any more. This makes
configuring multiple Grape pipelines more convenient.

To learn more about Grape, and to download and install it, go to the Bioinformatics
and Genomics website at:

Grape Homepage [http://big.crg.cat/services/grape]

Note

The grape.recipe.pipeline package is a Buildout [http://www.buildout.org]
recipe used by grape.buildout, and is not a standalone Python package. It is only
going to be useful as installed by the grape.buildout package.

Motivation

Here at the CRG, we configure all our RNASeq pipeline runs in a central place
before running them. Once all the accessions and pipeline profiles have been defined
and the buildout parts have been created, we start and execute them on an
SGE [http://en.wikipedia.org/wiki/Oracle_Grid_Engine] cluster.

When we receive FASTQ or BAM files for a project, we typically have to:

	Define the accessions and profiles:

grape.buildout/accessions/MyProject/db.cfg
grape.buildout/profiles/MyProject/db.cfg

	Create a pipeline project folder:

grape.buildout/pipelines/MyProject

	Configure the buildout:

grape.buildout/pipelines/MyProject/buildout.cfg

	Run the buildout in:

grape.buildout/pipelines/MyProject

	Run the pipelines in:

grape.buildout/pipelines/MyProject/parts/*/

The grape.recipe.pipeline recipe plays a major role in step number 4.
The buildout uses the recipe to produce the individual pipelines and
preconfigure the start and execute scripts with all the necessary command
line options.

Accession Configuration Parameters

The accession parameters are mostly derived from UCSC’s ENCODE controlled vocabulary [http://genome-test.cse.ucsc.edu/cgi-bin/hgEncodeVocab?type=%22typeOfTerm%22].

The following parameters are used when configuring accessions:

	file_location
	The full path to the file

If there is more than one file, put one file per line

For each line in file_location, a corresponding line needs to be specified for the
following parameters:

	mate_id
	Using this label, files can be marked as belonging to one read

	pair_id
	Using this label, files can be associated with pairs

	label
	Using this label, files can be associated with the accession itself

The pairing information is required:

	paired
	Set this to 0 for unpaired reads, an 1 for paired.

Instead of risking to wrongly deduce the file type from the file extensions contained
in the file_location parameter, it should be given explicitly here.

	type
	Set the file type. This can be set to fastq or bam

The qualities and the read type are important, because depending on them Grape may produce
different results:

	qualities
	The base quality can be se to phred and solexa, or if you don’t
know the quality, you can set it to ignore

	readType
	Paired/Single reads lengths: Specific information about cDNA sequence
reads including length, directionality and single versus paired read.

See UCSC’s ENCODE controlled vocabulary for readType [http://genome-test.cse.ucsc.edu/cgi-bin/hgEncodeVocab?type=readType].

The replicate and species parameters don’t change anything in the behaviour of Grape,
but are considered essential meta data.

	replicate
	The biological replicate of a particular experiment, if the experiment is
a bioreplicate

	species
	The species, for example Homo sapiens, Mus musculus

The following parameters have been used in the ENCODE project. It makes sense to
fill in the cell parameters and the rnaExtract as well. For most projects,
the localization is probably going to be ‘cell’.

	cell
	Cell, tissue or DNA sample: Cell line or tissue used as the source of
experimental material.

See UCSC’s ENCODE controlled vocabulary for cell [http://genome-test.cse.ucsc.edu/cgi-bin/hgEncodeVocab?type=cell].

	rnaExtract
	RNA Extract: Fraction of total cellular RNA selected for by an experiment.
This includes size fractionation (long versus short) and feature
fractionation (PolyA-, PolyA+, rRNA-).

See UCSC’s ENCODE controlled vocabulary for rnaExtract [http://genome-test.cse.ucsc.edu/cgi-bin/hgEncodeVocab?type=rnaExtract].

	localization
	Cellular compartment: The cellular compartment from which RNA is extracted.
Primarily used by the Transcriptome Project.

See UCSC’s ENCODE controlled vocabulary for localization [http://genome-test.cse.ucsc.edu/cgi-bin/hgEncodeVocab?type=localization].

Example Accession Configuration

Here’s a complete example of how the pipelines are configured, taken from the
Test project in grape.buildout.

First we define an accession in:

accession/Test/db.cfg

This is the content of the db.cfg file:

[TestRun]
species = Homo sapiens
readType = 2x76
cell=NHEK
rnaExtract=LONGPOLYA
localization=CELL
replicate=1
qualities=solexa
type=fastq
file_location = ${buildout:directory}/src/testdata/testA.r2.fastq.gz
 ${buildout:directory}/src/testdata/testA.r1.fastq.gz
 ${buildout:directory}/src/testdata/testB.r2.fastq.gz
 ${buildout:directory}/src/testdata/testB.r1.fastq.gz
mate_id = testA.2
 testA.1
 testB.2
 testB.1
pair_id = testA
 testA
 testB
 testB
label = Test
 Test
 Test
 Test
type = fastq
paired = 1

Profiles Configuration Parameters

The following parameters are configured in the profiles folder, and specify the
general parameters of the Grape pipeline.

The project id should be as short as possible.

	PROJECTID
	Name of the project

There are two predefined pipeline templates, one for fastq files as input and one
for bam files.

	TEMPLATE
	Path to the template defining the pipeline steps

For FASTQ files as input:
${buildout:directory}/src/pipeline/template3.0.txt

For BAM files as input:
${buildout:directory}/src/pipeline/template.bam.txt

There are some technical settings that need to be made so that the results are written
to the right databases.

	DB
	Statistic results database name

	COMMONDB
	Meta data Database name

	HOST
	MySQL database host name

	CLUSTER
	Name of the cluster node to use

You can fine-tune the number of threads to be used for any program that can make use of
threads, like for example GEM.
There is also a setting for the amount of memory to use for the Flux.

	THREADS
	Number of threads to use

	FLUXMEM
	Configures the memory used by the Flux. The default
value is 16G

The mapper and the number of mismatches can be set.

	MAPPER
	This currently has to be set to the value GEM

	MISMATCHES
	Number of mismatches for the mapper

The genome and annotation files need to be specified.

	GENOMESEQ
	Genome file

	ANNOTATION
	Annotation file

Preprocessing the reads should be done on the fly. The most common preprocessing step
is trimming, so there is one setting for the trim length. You can also specify your
own preprocessing script.

	PREPROCESS_TRIM_LENGTH
	A preprocessing step that trims the reads by the given
nucleotide length

	PREPROCESS
	Path to a custom script used for preprocessing each
of the read files before anything else

You can customize the way the recursive mapping is done, as well as how the postprocessing
is done on some files.

	MIN_RECURSIVE_MAPPING_TRIM_LENGTH
	Tunes the minimum length to which a read will be
trimmed during the recursive mapping.

	MAXINTRONLENGTH
	Sets the maximum length of splits allowed during the
postprocessing of the files generated by gem-2-sam
removing the noise.

The default is set to 50k, which is reasonable in
mammals, however different species may require
different settings. Setting it to 0 will remove this
filter.

Example Profile Configuration

Then we need to define the pipeline runs in:

profiles/MyProject/db.cfg

This is the content of the db.cfg file:

[runs]
parts = TestRun

[pipeline]
TEMPLATE = ${buildout:directory}/src/pipeline/template3.0.txt
PROJECTID = Test
DB = Test_RNAseqPipeline
COMMONDB = Test_RNAseqPipelineCommon
THREADS = 8
MAPPER = GEM
MISMATCHES = 2
CLUSTER = mem_6
ANNOTATION = ${buildout:directory}/src/testdata/H.sapiens.EnsEMBL.55.test.gtf
GENOMESEQ = ${buildout:directory}/src/testdata/H.sapiens.genome.hg19.test.fa

[TestRun]
recipe=grape.recipe.pipeline
accession = TestRun

Now that we have the accessions and profiles defined, we can go to our project
folder and define the buildout.cfg that will produce our Grape pipelines:

pipelines/Test/buildout.cfg

The buildout.cfg should look like this:

[buildout]
extends = ../dependencies.cfg
 ../../accessions/Test/db.cfg
 ../../profiles/Test/db.cfg

There are pointers to the accession and profile. The dependencies file takes
care of installing all the dependencies, like overlap, flux, gem, and the
Grape pipeline.

Contents:

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Maik Röder.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	grape.recipe.pipeline

Index

 Copyright 2012, Maik Röder.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		grape.recipe.pipeline »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Maik Röder.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

